
Topological entropy of autonomous flows

R. Badii
Paul Scherrer Institute, 5232 Villigen, Switzerland

~Received 1 July 1996!

The topological entropy of autonomous flows is evaluated by a method based on symbolic dynamics and on
the thermodynamic formalism for nonlinear dynamics. This technique, which applies to all generalized entro-
piesKq , reproduces a well-known formula for the metric entropy and clarifies the relationship between a flow
and the associated Poincare´ maps, beyond the straightforward case of periodically forced nonautonomous
systems. Numerical results for the Lorenz and Ro¨ssler systems are presented and verified with an independent
estimator.@S1063-651X~96!50211-4#

PACS number~s!: 05.45.1b, 47.20.Ky

One of the primary indicators of chaos in a dynamical
system is the topological entropyK0 @1#, which measures the
exponential increase of the number of orbits belonging to
sets with suitable separation properties@2#, as a function of
the orbit length. Therefore,K0 quantifies the ‘‘richness’’ of
solutions of the system. Furthermore, it enjoys a few other
properties, such as invariance under smooth coordinate
changes, which make its estimation a common step in the
analysis of chaotic systems. The calculation is, however,
mostly restricted to maps@3# or to periodically forced flows.
For this reason, the present paper focuses on the definition
and evaluation of the topological entropyK0 for general
flows and experimental signals. The method is based on a
thermodynamic approach that applies to the whole general-
ized entropy functionKq @4#, which accounts for the fluctua-
tions of local entropies and includesK0 as a particular case.

In the analysis of smooth flows with low-dimensional at-
tractors, timet is usually discretized by means of a Poincare´
sectionS @5#. If this is properly chosen, the ‘‘original’’ dy-
namics described by the vector fieldẋ5f~x,t!, with xPRd

andf a nonlinear function, is equivalent to that of the result-
ing Poincare´ map yn115F(yn ,n) on the surface of section
S, where ynPS and F is another nonlinear function. The
correspondence is indeed straightforward in the case of non-
autonomous systems with a periodic time dependence off. In
particular, the generalized entropiesKq of the flow equal
those of the map divided by the periodT. For autonomous
flows, instead,f is time independent and the orbit intersects
S at irregularly spaced timestn . Nevertheless, a relation
between flow and map entropies still holds, although only for
the metric entropyK1 , whereby the average value of the
return timeTn5tn2tn21 is involved @6#.

In this work, a relation valid for generic entropiesKq ,
;q, is proposed. The method extends a grand-canonical for-
mulation of the thermodynamic formalism for maps, based
on symbolic dynamics. Applications to the Lorenz and
Rössler systems are presented forq50, 1, and 2, and verified
by an independent estimate obtained from a suitable average
of the flows’ local expansion rates. The analysis makes use
of the sole information that is usually available from experi-
mental time series.

The generalized entropiesKq can be defined in a homo-
geneous way for maps and flows considering the probability
P~e,t,x0! of finding an orbit of lengtht ~either a real or a

natural number! within a maximum distancee from the orbit
{ xt , 0<t<t% originating at the pointx0 ~the symbolx de-
noting, in the following, phase-space points for both flows
and maps!. In the chaotic regime, this quantity, which refers
to the natural invariant measurem @7# of the system, is usu-
ally assumed to scale as

P~e,t;x0!;ea~x0!e2k~x0 ,t !t, ~1!

for t→` ande→0, wherea(x0) is the local dimension of the
e neighborhood ofx0 andk(x0 ,t) is the local entropy of the
given portion of the trajectory@8#. The generalized dimen-
sions and entropiesDq and Kq , respectively, are then de-
fined through the moments ofP as

^P~e,t;x!q21&;e~q21!Dqe2t~q21!Kq, ~2!

in the limit t→`, e→0 @8#. For q→1, one obtains the infor-
mation dimensionD1 and the metric entropyK1 @7# and, for
q50, the box dimensionD0 @9# and the topological entropy
K0 @1#.

Clearly, if the flow crosses the surface of section at times
tn5nT, with a fixedT, Kq

f 5Kq
m/T, where the superscripts

refer to flow and map, respectively. For generic systems~i.e.,
either autonomous or aperiodically forced nonautonomous!,
K1
f 5K1

m/^T& @6#, while nothing is known forqÞ1. A direct
evaluation ofKq from Eq. ~2!, on the other hand, is rather
cumbersome because of the large statistical fluctuations ofP
for large t and of the slow convergence of the finite-t esti-
mates ofKq for e!1, especially when phase transitions occur
in the thermodynamic representation of nonlinear dynamics
@10,11# and in experimental systems@12#.

An alternative, direct definition of the topological entropy
K0
f for flows is also available@13#:

K0
f 5 lim

T→`

1

T
ln N~T!, ~3!

whereN~T! is the number of~unstable! periodic orbits of
length at mostT. Also this relation, however, is hardly us-
able in practice because only low-order orbits can usually be
located by analyzing a time series~especially if experimen-
tal!. Better results can be obtained by ordering the dynamics
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hierarchically and applying predictive algorithms that accel-
erate the convergence of the estimates to the asymptotic
limit.

To this aim, one introduces a partition of the map’s phase
space consisting of a finite numberb of disjoint subsetsBk
~k50, . . . ,b21! so that an orbitv5{ x0 , . . . ,xn} is associ-
ated with the symbol sequenceS5s0s1 •••sn , where
siP$0,1, . . . ,b21% is the label of the element visited at time
t i . One further requires the partition to be generating,
i.e., such that infinite symbol sequences correspond to
individual points in phase space@14#. Since the mapF pre-
serves the natural measurem, one has m(Bk)
5m@F21(Bk)#, ; k, and the probabilityP~S! of sequence
S equalsm@Bs0

ùF21(Bs1
)ù•••ùF2n(Bsn

)#. Accordingly,
the generalized entropy is defined through the canonical par-
tition sum

Zn~q!5(
S

Pq~S!;e2n~q21!Kq, ~4!

which runs over all sequencesS of lengthn. Because of the
constancy ofn, this formula cannot be immediately extended
to flows by lettingn take on real values. One first needs a
grand-canonical formulation in which variable-length se-
quences appear in the sum.

Relation ~4! descends from a tree representation of the
symbolic dynamics in which theb symbols label the off-
springs of the root, pairs of symbols the nodes of the second
level, and concatenations ofn symbols those of the generic
nth level. Since the dynamics usually folds phase space in-
completely over itself, some transitions between partition el-
ements are forbidden and the corresponding sequences are
pruned off the tree. In such cases, or whenever the probabili-
ties P~S! exhibit large variability, it is convenient to parse
the symbolic signal generated by the map into variable-
length words. This technique, which is called ‘‘coding,’’ is
currently implemented by information compression algo-
rithms, like Lempel and Ziv’s@15#, to reduce the redundancy
of the signal. For example, ifS500 is forbidden in the binary
caseb52, the dynamics yields concatenations of the two
wordsw151 andw2501: in terms of them, a complete bi-
nary tree is recovered. The number and the lengths of such
words may vary greatly from case to case, depending on the
system and on the coding method.

The tree formed after the coding presents concatenations
W of l basic wordswi at the l th level. Whatever symbolic
regrouping has been chosen, it is necessary to reformulate
the thermodynamic sum~4! in order to account for the vari-
ability of the word lengths. Let us, therefore, introduce the
grand-partition function

V l~z;q![(
W

Pq~W!zl ~W!, ~5!

whereW is a level-l word andl ~W!>l its length~number of
symbols!. The termzl (W) provides a detailed compensation
for the generally exponential decrease ofP~W!
;exp@2kl ~W!# with l ~W!. In fact, the series converges if
z,z~q!, for l→`, wherez~q! is the convergence radius. In

particular, by settingz5z~q!5exp@~q21!Kq] into Eq. ~5!,
equating the result to 1, and lettingq→1, one obtains the
metric entropy

K15 lim
l→`

2(
W

P~W!ln P~W!Y (
W

P~W!l ~W! ~6!

for a variable-length coding@16#. In general, rather than de-
termining z~q! by imposing the arbitrary constraint
V l(z;q)51 ~which would introduce prefactor errors!, one
compares the partition functions at two consecutive levels:

(
W

Pq~W!zl ~W!5@l~z;q!#21(
W8

Pq~W8!zl ~W8!, ~7!

whereW5w0w1 ...wl is a generic level-l word andW8
5Wwl11 any of its offsprings. In the limitl→`, z(q) is
determined from the relationl@z(q);q#51. A standard pro-
cedure@17,16# finally permits one to rewrite Eq.~7! as an
eigenvalue equation for a generalized transfer matrix
T l(z,q), the entries of which read, at levell11,

Tw0w18 •••w
l8 ;w1 •••wl11

[sq~Wwl11!z
l ~Wwl11!2l ~W!dw

18w1
•••dw

l8wl
, ~8!

wheres(Wwl11)[P(Wwl11)/P(W) is a term of the level-l
probability scaling function@18#, which consists of the sym-
bolically orderedl -word conditional probabilities. Consider-
ation of these rates is tantamount to performing an order-l
word-to-word Markov approximation of the system’s scaling
dynamics, with considerable improvement of the conver-
gence of the estimates. With this formulation, the general-
ized entropy is given by

Kq5
ln z~q!

q21
, ~9!

wherez(q) is the value ofz for which the largest eignevalue
l1(z;q) of T equals 1, in the limitl→`; i.e., it is the solu-
tion of

det@T l~z,q!2I l #50 ~10!

for l→`, where the indexl again indicates the hierarchical
level. The polynomials obtained in this way coincide with
those of the transition matrices for subshifts of finite type
~i.e., for finite-order Markov processes!, up to a possible
overall factorzp, pPN.

Evidently, this approach can be readily extended by let-
ting l (W) take on real values and, in particular, the actual
temporal extension~briefly called ‘‘length,’’ in the follow-
ing! of the orbits of the flow associated with the map’s sym-
bolic sequenceW. In this way, Eq.~9! yields eitherKq

m or
Kq
f depending on whetherl (W) equals the numberuWu of

symbols inW or the length of a corresponding orbit of the
flow, respectively. Since each wordW identifies a finite re-
gion BW of the map’s phase space, which shrinks to a point
only when uWu→`, the value ofl (W) may be chosen with
some freedom: for example, either as the average or the
shortest return time of the flow trajectory toBW , or as the
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length of the periodic orbit with symbol sequenceW ~or a
cyclic permutation of it!, if this exists~some wordW, in fact,
may not be periodically extendible, so thatBW contains no
periodic point belonging to an order-uWu orbit!. In any of
these cases, the overall map~flow! may be interpreted as the
union of local maps, each defined on aBW and advancing the
orbit by a timel (W). Such a construction is called ‘‘induc-
tion’’ @6#. Within this scheme, Eq.~6! reproduces Abramov’s
theorem@6#: in fact, the metric entropy of the map~flow!
equals that of the induced map~obtained via the word parti-
tioning! divided by the average orbit length at levell , in the
limit l→`. Clearly, if l (W)5TuWu, for all W, one solves
Eq. ~10! for zT and recovers the trivial caseKq

f 5Kq
m/T: if, in

addition, no prohibitions occur at levell , the polynomial~10!
admits the same zeros as at the previous level. Variations of
T with the sequenceW in the flow may either accelerate or
slow down the convergence to the limit with respect to the
map: appearance of short~long! T’s increases~decreases!
Kq .

The method has been applied in the casesq50, 1, and 2
to the Lorenz system@19#

ẋ5210~x2y!,

ẏ52y128x2xz, ~11!

ż52bz1xy,

at b58/3 andb51 and to the Ro¨ssler system@20#

ẋ52y2z,

ẏ5x10.2y, ~12!

ż50.225.7z1xz.

In the former, the Poincare´ section has been chosen as
S5$~x,z!: x5y, ẍ sgn~x!,0% ~see@12# for further details!; in
the second, as the planex50 with ẋ.0. Since the method is
proposed for numerical as well as for experimental data, the
generating partition has been approximated by first extract-
ing all unstable periodic orbits of order up to 9 from an
embedded scalar time series and by requiring that different
symbolic labels be attributed to all periodic points on the
section@12#. This yields a binary~ternary! partition for the
Lorenz system atb58/3 ~b51!, defined, respectively, by
x50 andx560.2 in the~x,z! plane, and a binary partition
for the Rössler system, defined byy526.74 in the ~y,z!
plane @21#. Among the three possibilities proposed above
for the evaluation of the lengthsl (W), I have chosen the
one based on the unstable periodic orbits, since these
have been already detected prior to the construction of the
partitions and are quite easily identifiable even from experi-
mental time series. To test the robustness of the method, the
lengths l (W) assigned to symbol sequences without peri-
odic extensions have been approximated by means of differ-
ences such asl ~0010!'l ~001 011!2l ~11! or l ~0221!
'l ~010 221 110!2l ~01!2l ~110!. This procedure has been
originally proposed in@22# for other observables.

For the Lorenz system atb58/3, the finite-size estimates
K0
f ( l ) of K0

f , obtained by solving Eq.~10! at resolution
level l , yield K0

f ~3!'0.914, K0
f (4)'0.916, K0

f ~5!'0.910,
and the asymptotic valueK0

f 50.91060.005. It must be
noted that the map’s topological entropyK0

m'ln 2 divided
by the average return timêT&'0.747 would give the lar-
ger value 0.928, which indeed coincides withK0

f ~2!. For
comparison, the first average Lyapunov exponent is^l1&
50.905660.0001, which agrees with the value ofK1

f given
by relation~6!, andK2

f 50.90160.005.

FIG. 1. Plot of the temporal extensionsl n of the
unstable periodic orbits of the Lorenz system atb51
as a function of the ordern. Notice how the spread
in their values increases withn.
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At b51, the analysis has been carried out using both
the original three symbols 0, 1, and 2, and a codef con-
sisting of the four primitive words~0, 2, 10, 12!: the latter,
indeed, ‘‘incorporates’’ the prohibition of the word 11@12#
and yields a more compact tree. The occurrence of further
prohibitions at all levels 2,l<9 slows down the conver-
gence considerably with respect to the previous case for
both the map and the flow. In fact, using codef,
K0
f ~2!'0.89 andK0

f ~3!'0.83 are still far from the best es-
timate of K0

f 50.64060.005. The broad range in which
the lengths of equal-order periodic orbits of the flow are
found also hinders the analysis. The lengthsl n are plotted as
a function of the order~number of symbols in the associated
symbol sequence! n in Fig. 1. The equality betweenK1

f and
^l1&'0.5 is again confirmed, as well as Abramov’s formula.
Notwithstanding the larger disuniformity of this attractor
~difference betweenK0 andK1), the map’s topological en-
tropy, K0

m50.71360.002, divided bŷ T&'1.11 is closer to
K0
f than forb58/3. Finally,K2

f 50.3660.01.
For the Ro¨ssler system, the method yieldsK0

f ~2!'0.093,
K0
f ~3!'0.089, and the asymptotic predictionK0

f 50.0890
60.0005, while the ratio betweenK0

m50.50060.015 and̂T&
'5.86 is smaller thanK0

f . The attractor is also quite nonuni-
form, sinceK1

f 5^l1&'0.071 05 differs substantially from
K0
f . The level-three approximationK1

f ~3!50.0765 is less ac-
curate than the corresponding one atq50. Even slower con-

vergence has been observed atq52, whereK2
f ~3!50.0672 is

still far from the best estimateK2
f 50.5860.01.

All values of K0
f have been compared with the estimate

@10#

K̃0
f 5 lim

t→`

@ ln^m1~ t !&#/t, ~13!

where the local multiplierm1(t)5exp(l1t) is the expansion
factor of nearby points along the unstable manifold of the
flow over a timet. Values oft up to 180 have been consid-
ered, and very good agreement was found with the grand-
canonical approach. In the Lorenz system atb51, the con-
vergence law @ ln^m1(t)&#/t;K0

f 1a exp(2gt! has been
observed, withg'2.331022.

In this work, I have presented a grand-canonical approach
to the evaluation of dynamical entropiesKq

f of generic flows,
which is not only a practical technique to obtain more pre-
cise values than with phase-space averages or with a stan-
dard definition valid forq50, but also a theoretical tool to
extend the definition ofKq

f to all q’s. Further applications to
numerical and experimental data from an NMR laser with
delayed feedback are planned. A systematic study of the con-
vergence properties of the method~for both maps and flows!
will be presented elsewhere.

The author acknowledges fruitful collaboration with M.
Finardi in the analysis of time series.
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