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Topological entropy of autonomous flows
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The topological entropy of autonomous flows is evaluated by a method based on symbolic dynamics and on
the thermodynamic formalism for nonlinear dynamics. This technique, which applies to all generalized entro-
piesK,, reproduces a well-known formula for the metric entropy and clarifies the relationship between a flow
and the associated Poincamaps, beyond the straightforward case of periodically forced nonautonomous
systems. Numerical results for the Lorenz andg$ter systems are presented and verified with an independent
estimator[S1063-651X96)50211-4

PACS numbeis): 05.45:+b, 47.20.Ky

One of the primary indicators of chaos in a dynamicalnatural numberwithin a maximum distance from the orbit
system is the topological entrop§p [1], which measures the {x,, O<7<t} originating at the poink, (the symbolx de-
exponential increase of the number of orbits belonging taoting, in the following, phase-space points for both flows
sets with suitable separation properti@$ as a function of and mapgs In the chaotic regime, this quantity, which refers
the orbit length. Thereforek; quantifies the “richness” of to the natural invariant measune[7] of the system, is usu-
solutions of the system. Furthermore, it enjoys a few othegrlly assumed to scale as
properties, such as invariance under smooth coordinate
changes, which make its estimation a common step in the P(€,t;xg)~ e*X0)g™ x0T, 1
analysis of chaotic systems. The calculation is, however,
mostly restricted to map8] or to periodically forced flows. for t—« ande—0, wherea(x,) is the local dimension of the
For this reason, the present paper focuses on the definitiafineighborhood ok, and «(Xg,t) is the local entropy of the
and evaluation of the topological entrof§, for general given portion of the trajectory8]. The generalized dimen-
flows and experimental signals. The method is based on sions and entropieB, and K, respectively, are then de-
thermodynamic approach that applies to the whole generafined through the moments & as
ized entropy functiorK, [4], which accounts for the fluctua-
tions of local entropies and includés, as a particular case. (P(€,t;x)97 1)~ a7 1Dag 1A DKq 2

In the analysis of smooth flows with low-dimensional at-
tractors, timet is usually discretized by means of a Poincarein the limit t—, e—0 [8]. For g—1, one obtains the infor-
sectionX, [5]. If this is properly chosen, the “original” dy- mation dimensiorD, and the metric entropi¢, [7] and, for
namics described by the vector fiekg=f(x,t), with xe R q=0, the box dimensiol, [9] and the topological entropy
andf a nonJinear function, is equivalent to that of the result-k , [1].
ing Poincaremapy,.;=F(y,,n) on the surface of section  Clearly, if the flow crosses the surface of section at times
3, wherey,e2 andF is another nonlinear function. The t,=nT, with a fixed T, KLZKQ"/T, where the superscripts
correspondence is indeed straightforward in the case of noRefer to flow and map, respectively. For generic systéies
autonomous systems with a periodic time dependenéelof  ejther autonomous or aperiodically forced nonautonomous
particular, the generalized entropi&s, of the flow equal K{=KT/(T) [6], while nothing is known forg#1. A direct
those of the map divided by the peridd For autonomous  gyajyation ofK, from Eq. (2), on the other hand, is rather
flows, insteadf is time independent and the orbit intersects . mpersome because of the large statistical fluctuatioRs of
2 at irregularly spaced times,. Nevertheless, a relation o |arget and of the slow convergence of the finttesti-
between'flow and map entropies still holds, although only for,5tes oK, for e<1, especially when phase transitions occur
the metric entropyK, vyhgreby the average value of the i, the thermodynamic representation of nonlinear dynamics
return timeT,=t,—t,, is involved[6]. [10,11 and in experimental systeni$2].

In this work, a relation valid for generic entropiés, , An alternative, direct definition of the topological entropy
Vq, is proposed. The method extends a grand-canonical forKB for flows is also availablg13]:

mulation of the thermodynamic formalism for maps, based

on symbolic dynamics. Applications to the Lorenz and 1
Rossler systems are presentedder0, 1, and 2, and verified Ki=lim = In N(T), 3
by an independent estimate obtained from a suitable average Tow T

of the flows’ local expansion rates. The analysis makes use

of the sole information that is usually available from experi-where N(T) is the number of(unstabl¢ periodic orbits of

mental time series. length at mosfT. Also this relation, however, is hardly us-
The generalized entropig§, can be defined in a homo- able in practice because only low-order orbits can usually be

geneous way for maps and flows considering the probabilityocated by analyzing a time seriésspecially if experimen-

P(et,xo) of finding an orbit of lengtht (either a real or a tal). Better results can be obtained by ordering the dynamics
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hierarchically and applying predictive algorithms that accel-particular, by settinggz=z(q)=exd(q—1)K,] into Eg. (5),
erate the convergence of the estimates to the asymptotequating the result to 1, and lettingj—1, one obtains the
limit. metric entropy
To this aim, one introduces a partition of the map’s phase
space consisting of a finite numblerof disjoint subset8,
(k=0, ... pb—1) so that an orbitw={Xg, ... X,} is associ-
ated with the symbol sequenc&=sys;---s,, where
s;€{0,1, ... b—1} is the label of the element visited at time for a variable-length codinfl6]. In general, rather than de-
ti. One further requires the partition to be generatingtermining z(q) by imposing the arbitrary constraint
i.e., such that infinite symbol sequences correspond t6),(z;q)=1 (which would introduce prefactor errgrsone
individual points in phase spa¢&4]. Since the mag- pre-  compares the partition functions at two consecutive levels:
serves the natural measurem, one has m(By)
=m[F }(By)], V k, and the probabilityP(S) of sequence
S equalsm[Bs NF~*(Bs)N---NF~"(B, )]. Accordingly,
the generallzed entropy is defined through the canonical par-
tition sum where W=wgw,...w; is a generic level- word and W’
=Ww ., any of its offsprings. In the limil —o, z(q) is
determined from the relation[z(q);q]=1. A standard pro-
Z.(q)=>, PI(S)~e Ma-1Kq (4)  cedure[17,14 finally permits one to rewrite Eq.7) as an
S eigenvalue equation for a generalized transfer matrix
T,(z,9), the entries of which read, at leviel-1,

Klzlim—% P(W)In P(W) % P(W)/ (W)  (6)

| -0

% PIW)ZW=[\(z;q)] 1D PIW)ZW), (7)
=~

which runs over all sequencé&sof lengthn. Because of the

constancy of, this formula cannot be immediately extended TW0W1 W W W g

to flows by lettingn take on real values. One first needs a

grand-canonical formulation in which variable-length se- =g (Wwj )2 WD W g, Swiw: (8)
guences appear in the sum. !

Relation (4) descends from a tree representation of theyheres(Ww;, ;)=P(Ww,)/P(W) is a term of the level-
symbolic dynamics in which thé symbols label the off- probability scaling functiori18], which consists of the sym-
springs of the root, pairs of symbols the nodes of the seconfolically ordered -word conditional probabilities. Consider-
level, and concatenations af symbols those of the generic ation of these rates is tantamount to performing an order-
nth level. Since the dynamics usually folds phase space inyord-to-word Markov approximation of the system’s scaling
completely over itself, some transitions between partition eldynamics, with considerable improvement of the conver-

ements are forbidden and the corresponding sequences ajence of the estimates. With this formulation, the general-
pruned off the tree. In such cases, or whenever the probabilized entropy is given by

ties P(S) exhibit large variability, it is convenient to parse

the symbolic signal generated by the map into variable- In z(q)

length words. This technique, which is called “coding,” is Kq= q-1 ' ©)
currently implemented by information compression algo-

rithms, like Lempel and Ziv'$15], to reduce the redundancy wherez(q) is the value ofz for which the largest eignevalue
of the signal. For example, 8=00 is forbidden in the binary \,(z;q) of T equals 1, in the limit—; i.e., it is the solu-
caseb=2, the dynamics yields concatenations of the twotion of

wordsw,;=1 andw,=01: in terms of them, a complete bi-

nary tree is recovered. The number and the lengths of such defT,(z,9)—1,]=0 (10
words may vary greatly from case to case, depending on the
system and on the coding method. for | —», where the index again indicates the hierarchical

The tree formed after the coding presents concatenatiorl§vel. The polynomials obtained in this way coincide with
W of | basic wordsw; at thelth level. Whatever symbolic those of the transition matrices for subshifts of finite type
regrouping has been chosen, it is necessary to reformulaté€., for finite-order Markov processesup to a possible
the thermodynamic sur@d) in order to account for the vari- overall factorz®, pelN.
ability of the word lengths. Let us, therefore, introduce the Evidently, this approach can be readily extended by let-
grand-partition function ting /(W) take on real values and, in particular, the actual

temporal extensioribriefly called “length,” in the follow-
ing) of the orbits of the flow associated with the map’s sym-
O (z;q)=2 PIW)Z’W), (5 bol|c sequencaV. In this way, Eq.(9) yields eitherKg' or
w K depending on whether (W) equals the numde| of
symbols inW or the length of a corresponding orbit of the
whereW is a levelt word and/(W)=1 its length(number of  flow, respectively. Since each wol! identifies a finite re-
symbols. The termz”™) provides a detailed compensation gion By, of the map’s phase space, which shrinks to a point
for the generally exponential decrease oP(W) only when|W|—c, the value of/(W) may be chosen with
~exd —«/(W)] with Z/(W). In fact, the series converges if some freedom: for example, either as the average or the
z<z(q), for |-, wherez(q) is the convergence radius. In shortest return time of the flow trajectory Byy, or as the
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length of the periodic orbit with symbol sequendé (or a
cyclic permutation of iX, if this exists(some wordW, in fact,
may not be periodically extendible, so thB§, contains no
periodic point belonging to an ord@¥| orbit). In any of
these cases, the overall médow) may be interpreted as the
union of local maps, each defined oBg and advancing the
orbit by a time/(W). Such a construction is called “induc-
tion” [6]. Within this scheme, Eq6) reproduces Abramov’s
theorem[6]: in fact, the metric entropy of the maffilow)
equals that of the induced mapbtained via the word parti-
tioning) divided by the average orbit length at levein the
limit | —o0. Clearly, if /(W)=T|W]|, for all W, one solves
Eq. (10) for z" and recovers the trivial cad;efq: Kg”/T: if, in
addition, no prohibitions occur at levklthe polynomial10)
admits the same zeros as at the previous level. Variations
T with the sequenc®V in the flow may either accelerate or
slow down the convergence to the limit with respect to the
map: appearance of shoffiong) T's increases(decreases

q-
The method has been applied in the cage®, 1, and 2
to the Lorenz systeril9]

X

y=—y+28X—Xz,

—10(x—y),

— Bz+xy,
at 8=8/3 andB=1 and to the Rssler systeni20]
X=-y—z,
y=x+0.2,

z=0.2-5.7z+xz
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In the former, the Poincarsection has been chosen as
>={(x,2): x=Yy, X sgn(x)<0} (see[12] for further detail$; in

the second, as the plame=0 with x>0. Since the method is
proposed for numerical as well as for experimental data, the
generating partition has been approximated by first extract-
ing all unstable periodic orbits of order up to 9 from an
embedded scalar time series and by requiring that different
symbolic labels be attributed to all periodic points on the
section[12]. This yields a binarn(ternary partition for the
Lorenz system aj3=8/3 (B=1), defined, respectively, by
x=0 andx==*0.2 in the(x,z) plane, and a binary partition
for the Rsler system, defined by=—6.74 in the(y,z)
plane[21]. Among the three possibilities proposed above
(;?r the evaluation of the lengths(W), | have chosen the
one based on the unstable periodic orbits, since these
have been already detected prior to the construction of the
partitions and are quite easily identifiable even from experi-
mental time series. To test the robustness of the method, the
lengths /(W) assigned to symbol sequences without peri-
odic extensions have been approximated by means of differ-
ences such as$”’(0010~/(001012—/(11) or /(0221
~/(010 221 110—/(01)—/(110. This procedure has been
originally proposed if22] for other observables.

For the Lorenz system @8=8/3, the finite-size estimates
K1) of Kf, obtained by solving Eq(10) at resolution
level I, yield K!(3)~0.914, K{(4)~0.916, K{(5)~0.910,
and the asymptotic value(g=0.910t0.005. It must be
noted that the map’s topological entropj'~In 2 divided
by the average return timé)~0.747 would give the lar-
ger value 0.928, which indeed coincides wm{)(Z). For
comparison, the first average Lyapunov exponen{iig)
=0.9056+0.0001, which agrees with the value Iéﬁ given
by relation(6), andK}=0.901+0.005.

10

FIG. 1. Plot of the temporal extensiors of the
unstable periodic orbits of the Lorenz systenBatl
as a function of the orden. Notice how the spread
in their values increases with
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At B=1, the analysis has been carried out using botivergence has been observedjat2, wherek}(3)=0.0672 is
the original three symbols 0, 1, and 2, and a ce@deon-  still far from the best estimati,=0.58+0.01.
sisting of the four primitive words0, 2, 10, 12: the latter, All values of K{j have been compared with the estimate
indeed, “incorporates” the prohibition of the word 112]  [10]
and yields a more compact tree. The occurrence of further ~
prohibitions at all levels 21<9 slows down the conver- Ko= lim[In(u4(1))]/t, (13
gence considerably with respect to the previous case for =
both the map and the flow. In fact, using codf  \yhere the local multiplieg(t) =exp(\;t) is the expansion
K§(2)~0.89 andKO(S) ~0.83 are still far from the best es- factor of nearby points along the unstable manifold of the
timate of K{=0.640£0.005. The broad range in which flow over a timet. Values oft up to 180 have been consid-
the lengths of equal-order periodic orbits of the flow areered, and very good agreement was found with the grand-
found also hinders the analysis. The lendthare plotted as canonical approach. In the Lorenz systemBatl, the con-
a function of the ordetnumber of symbols in the associated vergence law [In{u(t))J/t~K{+a exp(-—yt) has been
symbol sequengen in Fig. 1. The equality betwee||<i1 and  observed, withy~2.3x 10 2.
(\1)~0.5 is again confirmed, as well as Abramov’s formula. In this work, | have presented a grand-canonical approach
Notwithstanding the larger disuniformity of this attractor to the evaluation of dynamical entropiﬁé of generic flows,
(difference betweelk, andK,), the map’s topological en- which is not only a practical technique to obtain more pre-
tropy, Kg'=0.713+0.002, divided by(T)~1.11 is closer to cise values than with phase-space averages or with a stan-
Kf) than for 3=8/3. FinaIIy,K;=0.36i0.01. dard definition valid forg=0, but also a theoretical tool to
For the Resler system, the method yielt$(2)~0.093, extend the definition okg to all g’s. Further applications to
K(f)(;g)%o,ogg, and the asymptotic predictidﬁ6=0.0890 numerical and experimental data from an NMR laser with
+0.0005, while the ratio betweet]'=0.500+0.015 andT)  delayed feedback are planned. A systematic study of the con-
~5.86 is smaller thak . The attractor is also quite nonuni- V€rgence properties of the meth@dr both maps and flows

form, since K!=(),)~0.07105 differs substantially from Will b& presented elsewhere.
K{). The level-three approximatidﬁfl(3)=0.0765 is less ac- The author acknowledges fruitful collaboration with M.
curate than the corresponding onegat0. Even slower con-  Finardi in the analysis of time series.
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